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We consider the periodic, two-dimensional motion of a viscous, incompressible liquid
which fills a rectangular container. The motion is due to the periodic motion of the
lid which moves in its own plane. If the velocities are sufficiently small the motion
will be governed by the linearized Navier–Stokes equations and consequently the
dimensionless stream function Ψ (x, z, t) =ψ(x, z)eit will satisfy the equation ∇4ψ −
iRe∇2ψ = 0, where Re is the Reynolds number. If we then seek separable solutions
for ψ(x, z) that satisfy the no-slip conditions on the sidewalls, it is easy to show that
the problem reduces to the eigenvalue problem

λ tan 1
2
λ=

√
λ2 − iRe tan 1

2

√
λ2 − iRe

where λ is the eigenvalue. A detailed analysis is made of this eigenvalue problem. All
the eigenvalues are complex; all eigenvalues with positive real part either belong to a
set {λu

n} in the upper half-plane or to another {λl
n} in the lower half-plane. They satisfy

the important relationship λl
n =

√
λu

n

2
+ iRe. We show by an asymptotic analysis that

while the λl
n move to the neighbourhood of the real axis as Re → ∞, the λu

n move away
from the origin and approach the line λi = λr in the complex-λ-plane. This fact has
an important bearing on the damping of gravity waves at high Reynolds numbers.
The eigenfunctions derived above are used to write down a formal expansion for the
stream function and the coefficients are determined from the boundary conditions
using a least-squares procedure. An examination of the resulting streamline patterns
reveals interesting inertial effects even at low Reynolds numbers. In particular we
examine the mechanism by which the flow field reverses its direction when the lid
stops and reverses its direction of motion. If inertial effects are completely negelected,
as has been done till now, one would infer an immediate response of the fluid to the
changes in the lid motion; for example, one would conclude, wrongly, that when the
lid is at rest so is the fluid. Our analysis shows, in fact, a very intricate and beautiful
mechanism, involving among other things an apparent engulfing of the corner eddy
by the new primary eddy, by which the direction of the circulation is reversed in the
fluid. These results should be of importance in the analysis of mixing, where such
effects appear to have been ignored till now.

1. Introduction
There is a large body of work dealing with the technologically important problem

of mixing, where the fluid motion is driven by the periodic motion of one or more of
the boundaries of the container. In most of these studies, see for example Ottino (1989,
1990), the fluid velocity field at low Reynolds numbers is found from experiments
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but the mixing characteristics are determined by analysing the time evolution of a
blob released at some time and place in the fluid. These analyses are usually based
on ideas and techniques from nonlinear dynamical systems. It is well-known that
mixing is greatly enhanced by periodic rather than steady motions of the walls; there
are some beautiful and instructive pictures in Ottino (1989) that illustrate this. On
the other hand, there is an even larger body of work on the steady velocity fields
generated in closed containers by the steady motion of one or more of the bounding
walls (Shankar & Deshpande 2000). This body of work is mostly computational since
a large range of Reynolds numbers is covered but it also contains some important
experimental and analytical or semi-analytical work at the lower Reynolds numbers.
There appears to be very little work, if any, dealing with periodic motions in lid-driven
cavities or containers. Very recently a number of papers have appeared (Galaktionov
et al. 1999; Anderson et al. 1999; Malyuga et al. 2002) that consider, using analytical
and computational tools, the mixing problem in containers with time-periodic stirring
protocols. However, in these papers all the inertial terms are dropped when dealing
with Stokes flow and effectively the fields are quasi-steady rather than truly unsteady.
As a consequence potentially important unsteady effects from the ∂v/∂t term in the
momentum equation have been lost.

The problem that we consider here is a generalized version of the Stokes first
problem (Batchelor 1967) which considers flow in a semi-infinite half-space due to
an oscillating plane boundary. The only non-zero velocity component in the Stokes
problem is the one parallel to the plate; the velocity profile can be described as
a damped transverse wave propagating in a direction perpendicular to the plane
boundary. The velocity variation damps out rapidly before it can diffuse in a given
time with the result that the motion is essentially confined to a ‘penetration depth’.
The presence of side- and bottom walls changes the picture considerably. In the
presence of the bottom wall alone, the velocity profile can be described as being due
to a system of transverse waves rather than a single one. The single most important
contribution of the sidewalls is the system of eddies – in the corners as well as in the
bulk of the fluid.

The only paper that we are aware of that deals with the unsteady Stokes or similar
equations in a partially confined geometry is Sturges & Joseph (1977). They consider
the motion in a simple fluid, i.e. a non-Newtonian fluid, between two infinite planes
generated by the tangential, in-plane oscillatory motion of one of the planes. The
fluid has a free surface between the planes and is unbounded below. Sturges & Joseph
develop a perturbation expansion for the field in terms of ε, the amplitude of the
oscillatory plate motion, and the field is determined to leading order giving an estimate
for the perturbed free-surface height, the quantity of primary interest to the authors.
It is interesting to note that no rise occurs if the motion of the sidewall is steady. Also
of interest is that the analysis leads to an equation for the stream function that is
identical in form to the one that follows from the linearized Navier–Stokes equations.
Sturges & Joseph solve this equation using an eigenfunction expansion procedure.

In this paper we consider the simplest case of the periodic motion of a Newtonian
fluid completely filling a container; the motion is generated by the simple harmonic
oscillation of the lid. The container is assumed to be rectangular and the flow two-
dimensional. One could well ask whether any new and interesting features are likely to
be found in this flow field. An interesting question of course is: how does the direction
of the general circulation change when the lid reverses its direction of motion over a
period? In the quasi-steady picture this change would take place immediately with no
phase lag and no intermediate structures formed. But this is obviously incorrect and
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only an unsteady analysis can yield the correct physical picture. Another question
pertains to the nature of the primary and corner eddies in unsteady flow and their
dependence on the the container depth and the Reynolds number, a new parameter
that now enters the problem. On the analytical side, there are interesting questions
that arise regarding the distribution of the spatial eigenvalues in the complex plane:
how does the spectrum differ from that obtaining in the steady case and how is its
distribution affected by increasing Reynolds number? We will show in what follows
that there are very interesting answers to all these questions, some of them quite
unexpected.

We should also point out an important connection that this work has to the
calculation of viscous damping of surface waves in a container. If capillary hysteresis
at the contact line and viscous dissipation at the free surface due to surface
contamination can be ignored, wave damping is only due to viscous dissipation
in the wall boundary layers and in the bulk of the fluid. Traditionally, in order to
avoid the complexity of a full viscous calculation, the latter have been estimated
separately (see, for example, Case & Parkinson 1957 and Miles 1967) and then added
to estimate the total damping rates. More recently Nicolás (2002) has made a direct
calculation of the total dissipation by solving for the full viscous field in the container
with the appropriate boundary conditions at the liquid free surface. His method,
involving the use of essentially real harmonic eigenfunctions, yields results that are in
very good agreement with experimentally measured damping rates. In our opinion, it
should be possible to more efficiently solve the full problem using the natural complex
eigenfunctions of the linearized Navier–Stokes equations. The present work is a first
step in this direction as it provides key information about the relevant spectrum,
especially for large Reynolds numbers.

2. Analysis
2.1. Formulation and non-dimensionalization

Consider a rectangular container of width L and depth H completely filled with a
Newtonian fluid of density ρ and kinematic viscosity ν. The lid of the container,
assumed to make perfect contact with the fluid, oscillates in its own plane generating
a velocity field in the fluid. We use a two-dimensional Cartesian coordinate system
with x̂ aligned with the direction of the lid motion and with ẑ perpendicular to it and
upwards. In the case of containers of finite depth the origin will be at the middle of
the container; for a container of infinite depth the origin will be at the top of the
container on the plane of symmetry. Let Ω be the frequency of the lid motion and U

be its maximum linear speed. In flow situations involving a translational velocity scale
U and a frequency Ω as is the case here, it is possible and natural (Happel & Brenner
1973) to define a ‘translational’ Reynolds number Retr = U L/ν and an ‘oscillatory’
Reynolds number Reos = ΩL2/ν. Retr and Reos can be varied independently by
varying U and Ω. In the rest of the paper, we assume that the Strouhal number,
Sr =Reos/Retr = ΩL/U = L/a � 1; this permits us to drop the nonlinear convective
terms in the momentum equations while retaining the unsteady terms. Note that here
a is the amplitude of the lid motion. We now non-dimensionalize all lengths by L,
time by Ω−1, velocities by U and the pressure by ρνUReos / L. Continuity and the
linearized Navier–Stokes equations then take the form

∇ · v = 0, (1a)
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v,t = −∇p +
1

Re
∇2v. (1b)

Here Re =L2Ω/ν is the oscillatory Reynolds number of the flow. As in steady flows,
it will be convenient to work with a scalar stream function Ψ (x, z, t) such that u =Ψ,z

and w = −Ψ,x where u and w are the x- and z-components of the fluid velocity. It
follows then that the field is determined by the single scalar equation

∇4Ψ − Re∇2Ψ,t = 0. (2)

Since the lid velocity has been assumed to be simple harmonic in time, we can assume
that Ψ (x, z, t) =ψ(x, z)eit with the understanding that ultimately we will take the real
part of the expression. Then the reduced stream function ψ(x, z) satisfies the field
equation

∇4ψ − iRe∇2ψ = 0. (3)

The no-slip boundary conditions require that u =w = 0 on the sidewalls x = ±1/2 and
the bottom wall z = −h/2; on the lid z = h/2, w =0 and u = u0(x)eit . If the lid speed
is uniform in x, u0(x) = 1; however it is advantageous to have a smooth distribution
in x vanishing at the end points as then the series that we use will converge very
rapidly. Throughout this paper we choose for the lid speed

u0(x) =

{
1.0, 0 � | x | < 1

2
− δ

0.5
{
1 + cos

[
π
(
| x | −

(
1
2

− δ
))/

δ
]}

, 1
2

− δ � | x | � 1
2
.

(4)

Thus u0(x) is just 1 over most of the lid but goes monotonically to zero near the
sidewalls; throughout we take δ to be 0.1. In summary, the boundary conditions on
the reduced stream function are

ψ
(
± 1

2
, z

)
= ψ,x

(
± 1

2
, z

)
=0, ψ

(
x, ± 1

2
h
)
= ψ,z

(
x, − 1

2
h
)
=0, ψ,z

(
x, 1

2
h
)
= u0(x).

(5)
If we now seek solutions for ψ of the form f (x)eλz, f (x) would have to satisfy

f iv + (2λ2 − iRe)f ′′ + (λ4 − iReλ2)f = 0. (6)

Since ψ has to be symmetric in x and the velocity has to vanish on the sidewalls we
find that

f (x) ∼ cos λx + B cos
√
λ2 − iRex (7)

with the eigenvalues the roots of

λ tan 1
2
λ=

√
λ2 − iRe tan 1

2

√
λ2 − iRe, (8)

and the scalar B = − cos 1
2
λ/ cos 1

2

√
λ2 − iRe. The eigenvalue equation (8) arises in a

different form and notation and in a different context in Sturges & Joseph (1977).
We will examine this equation in some detail in the next sub-section.

2.2. The distribution of the eigenvalues in the complex plane

We observe that if we let Re → 0, (8) reduces to the well-studied and extensively used
sin λ= −λ, the equation governing steady cavity flows, anti-symmetric in x. The latter
equation has only complex roots and an infinite number of them such that if µ is
a root, then −µ and µ are also roots; thus the roots are distributed symmetrically
about both axes in the complex plane in this limiting case. That this will not be so
in the present case when Re 	= 0 is indicated by the presence of the i in equation (8):
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(a) Re λu
1 λu

2 λu
3

0.1 4.21486 + 2.25535 i 10.71316 + 3.10530 i 17.07366 + 3.55249 i
1.0 4.23742 + 2.29724 i 10.71881 + 3.12476 i 17.07630 + 3.56516 i

10.0 4.49313 + 2.74167 i 10.77893 + 3.32591 i 17.10378 + 3.69467 i
100.0 7.65180 + 6.80733 i 11.73193 + 5.75383 i 17.49693 + 5.23650 i
500.0 16.01122 + 15.66115 i 17.64269 + 14.56024 i 20.93789 + 12.86170 i

1000.0 22.49233 + 22.25225 i 23.56161 + 21.41564 i 25.76120 + 19.91083 i
5000.0 50.05344 + 49.95081 i 50.48265 + 49.55943 i 51.34982 + 48.78844 i

10000.0 70.74760 + 70.67583 i 71.04356 + 70.39783 i 71.63869 + 69.84570 i

(b) Re λl
1 λl

2 λl
3

0.1 4.20993 − 2.24612 i 10.71191 − 3.10100 i 17.07307 − 3.54968 i
1.0 4.18809 − 2.20492 i 10.70634 − 3.08169 i 17.07046 − 3.53708 i

10.0 4.00197 − 1.82876 i 10.65402 − 2.89560 i 17.04535 − 3.41400 i
100.0 3.54365 − 0.58931 i 10.36266 − 1.68910 i 16.87615 − 2.46636 i
500.0 3.33744 − 0.22597 i 9.98695 − 0.68908 i 16.56290 − 1.16506 i

1000.0 3.28115 − 0.15384 i 9.83552 − 0.46637 i 16.36528 − 0.78989 i
5000.0 3.20435 − 0.06542 i 9.61246 − 0.19673 i 16.01879 − 0.32946 i

10000.0 3.18600 − 0.04571 i 9.55779 − 0.13731 i 15.92899 − 0.22941 i

Table 1. (a) The first three eigenvalues λu
1 , λ

u
2 and λu

2 in the first quadrant as functions of

the Reynolds number. (b) The first three eigenvalues λl
1, λ

l
2 and λl

3 in the fourth quadrant as
functions of the Reynolds number.

now if λ is a root, λ is not necessarily a root. However, before discussing the detailed
structure of the spectrum as a function of Re we will, to fix ideas, first present some
numerical results. Starting from the Re= 0 limit the roots can be obtained using
Newton’s method; we use the principle of the argument to ensure that all roots in a
given region of the complex plane have indeed been found. Figure 1 shows the first
ten roots for three values of the Reynolds number. We will order the roots in the first
and fourth quadrants in increasing values of their real parts. The roots in the first and
fourth quadrants belong to the sets {λu

n, n = 1, 2,. .} and {λl
n, n = 1, 2,. .} respectively.

It can be observed from figure 1 that (i) λl
n 	= λu

n, (ii) as n increases the spacing along
the real axis tends to a constant value, 2π, and (iii) whereas the λu

n move away from
the real axis as Re increases, the λl

n move towards the real axis. Table 1 lists the first
three eigenvalues, correct to all the places shown, over the range 0.1 � Re � 10,000.

We now list some properties of the eigenvalues and derive their asymptotic forms.
(a) Equation (8) has solutions in all four quadrants of the complex plane. It is

clear from (8) that −λu
n and −λl

n are eigenvalues as well.
(b) For Re =0, (8) reduces to the corresponding relation sin λ= −λ. This is shown

by expanding the right-hand side of (8) in Re and taking the limit Re → 0.
(c) It is well known (Shankar 1993) that for Re =0, λu

n and λl
n are complex

conjugates. Although this does not hold here for Re > 0 one might ask if an
equivalent relationship holds. It is a straightforward matter to show that

λl
n =

√
λu

n

2
+ iRe. (9)

This also holds with the roles of u and l interchanged. These relations are very
important as now only one branch needs to be computed, with (9) giving the other.

(d) We now determine the asymptotic forms of the eigenvalues for Re → ∞.

Defining appropriate branch cuts through the branch points ±eiπ/4
√

Re and
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Figure 1. The distribution of the first ten eigenvalues. �, Re= 0.1; �, Re= 1.0; �, Re= 10.0.
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recognizing that λl
n tend to the inviscid values in the infinite-Re limit, we assume

λl
n = (2n − 1)π + λl

n1(Re). On substituting this form into (8) and equating the real and
imaginary parts, we obtain

2(2n − 1)πλl
n1r

λl
n1r

2
+ λl

n1i

2
+ 2 =

√
Re

2
, (10a)

2(2n − 1)πλl
n1i

λl
n1r

2
+ λl

n1i

2
= −

√
Re

2
, (10b)

from which we obtain

λl
n1r =

2(2n − 1)πα(1 − 2α)

1 + (2α − 1)2
, (11a)

λl
n1i = − 2(2n − 1)πα

1 + (2α − 1)2
, (11b)

with α =
√

2/Re; λl
n1r and λl

n1i are the real and imaginary parts of λl
n1. Thus, in the

limit Re → ∞

λl
n ∼ 2(2n − 1)π

1 + (2α − 1)2
(1 − α − iα). (12)

Using λl
n the other eigenvalues λu

n are computed in a straightforward manner as

λu
n1r ∼

[
(2n − 1)2π2 +

√
(2n − 1)4π4 + Re2

2

]1/2

, (13a)

λu
n1i ∼ Re√

2
[(2n − 1)2π2 +

√
(2n − 1)4π4 + Re2]−1/2, (13b)

where λu
n1r and λu

n1i are the real and imaginary parts of λu
n1. Figure 2 compares the

loci of the first three eigenvalues as Re increases as computed from the asymptotic
formulae (11) and (13) with their direct numerical calculation from (8); the agreement
can be seen to be excellent for Re > 100. Notice that as Re → ∞, the λl approach
the real axis whereas the λu approach the line λr = λi . Observe also that the spacing
along the real axis between λl

n and λl
n+1 approaches 2π whereas the spacing between

λu
n and λu

n+1 approaches 4nπ2/
√

Re. This means that given N and ε > 0, we can find
an Re such that λu

N and λu
N+1 are within ε of each other. This fact has important

implications for an eigenfunction expansion at large Re; there will be a tendency for
the first-quadrant eigenfunctions to behave as if they were almost linearly dependent
and consequently for the relevant matrices to become ill-conditioned. Although these
facts are not of much relevance to the field driven by an oscillating lid, as Re can
practically be at most moderately large, they will be of great relevance to the wave
motion situation mentioned in § 1.

(e) As Re → 0, it can be shown that (8) can be written approximately as

sin λ= −λ +
iRe

2λ
cos2 1

2
λ. (14)

Assuming appropriate asymptotic forms for λu
nr and λu

ni as λu
nr = (4n − 1)π/2 + λu

n1r

and λu
ni = ln(4n − 1)π + λu

n1i , inserting into (14) and dropping quadratic terms like
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λu
n1r

2 yields the second-order linear system

a11λ
u
n1r + a12λ

u
n1i = b1,

a21λ
u
n1r + a22λ

u
n1i = b2,

where

a11 =
(4n − 1)π

2
(1 − ln(4n − 1)π),

a12 = −
[
(4n − 1)2π2

4
+ 2 ln(4n − 1)π − Re

8
(4n − 1)π

]
, a21 = −a12, a22 = a11,

b1 = [ln(4n − 1)π]2 − Re

8
(4n − 1)π, b2 =

Re

4
− (4n − 1)π

2
ln(4n − 1)π.

The corrections obtained give eigenvalues which are very good approximations for
fixed Re, not necessarily small, and large n. For example, for Re = 10, the first
eigenvalue λu

1 is approximated to within 3% whereas the approximation to λu
10 is

accurate to within 0.03%. The λl are then obtained from the λu.

2.3. The eigenfunction expansion for the velocity field

We are now in a position to write down a formal expansion for the velocity field
in terms of the eigenfunctions described in the previous sub-sections. Recall that we
had assumed a form Ψ (x, z, t) =ψ(x, z)eit for the stream function. Prior to expanding
ψ(x, z) in terms of the new eigenfunctions, it will prove convenient to treat the
field as being the sum of a field symmetric in z and of one antisymmetric in it, i.e.
ψ(x, z) = ψs(x, z) + ψa(x, z) where

ψs(x, z) ∼ f (x) cosh λz, ψa(x, z) ∼ f (x) sinh λz. (15)

The boundary conditions can also be written as sums of z-symmetric and z-
antisymmetric parts and consequently the symmetric and antisymmetric fields can be
calculated independently of one another. We now write down the formal eigenfunction
expansions

ψs(x, z) =
∑

n

anfn

(
x; λu

n

) cosh λu
nz

cosh λu
n

1
2
h

+
∑

n

bnfn

(
x; λl

n

) cosh λl
nz

cosh λl
n

1
2
h

, (16a)

ψa(x, z) =
∑

n

cnfn

(
x; λu

n

) sinh λu
nz

sinh λu
n

1
2
h

+
∑

n

dnfn

(
x; λl

n

) sinh λl
nz

sinh λl
n

1
2
h

, (16b)

where the an, bn, cn and dn are complex scalars that have to be determined from the
boundary conditions. The boundary conditions on z = h/2 are

ψs

(
x, 1

2
h
)

=ψa

(
x, 1

2
h
)

= 0, ψs,z

(
x, 1

2
h
)

= ψa,z

(
x, 1

2
h
)

= 1
2
u0(x). (17)

Now the scalars can be determined by the least-squares procedure that was described
in detail in Shankar (1993). Briefly, we truncate all sums in (16) to N terms, choose
M equidistant points on [0, 1/2] and determine the 4N coefficients in such a way that
the boundary conditions are satisfied in a least-squares sense on these points. This
has been shown to work very well in many cases in the past and it seems to work
even better here.
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3. Discussion of the results
There are two parameters, the dimensionless depth of the container h and the

Reynolds number Re, which enter the unsteady problem as opposed to h alone in
the steady case. Calculations show that although Re greatly affects the time scales
on which phenomena take place, the qualitative features are not greatly affected, at
least for the small Re that we are interested in here. In order to save space we will
therefore restrict our attention to the single Reynolds number, Re = 0.1, with the
understanding that the phenomena are not qualitatively very different at other low
Reynolds numbers.

Unless stated otherwise, for all the examples considered here N =20 and M = 2N ;
this is a very small value for N and still the boundary conditions are satisfied very
accurately as can be seen from the streamlines very close to the boundaries. We
have checked these results with N = 100 and find little difference between the more
accurate and less accurate results.

We observe that the dimensionless period T , with the normalization that we have
chosen, is 2π throughout, i.e. T = 2π, and we need only observe the field over a
single period 0 � t � T . In fact, we need only limit our observations to a half
period 0 � t < T/2 since over the other half only the flow direction changes with
identical corresponding eddy structures. We will therefore limit our observations to
0 � t < T/2.

3.1. Periodic eddies in an infinitely deep container

We shall first consider a somewhat simplified case, where the container is very deep
and the bottom has no impact on the field. In this case alone, the origin is assumed
to be at the intersection of the plane of symmetry with the lid and z still points
upwards. Now we need only retain those eigenvalues which have positive real part
and the expansion (16) now simplifies to

ψ(x, z) =
∑

n

a∞
n fn

(
x; λu

n

)
exp

(
λu

nz
)

+
∑

n

b∞
n fn

(
x; λl

n

)
exp

(
λl

nz
)

(18)

where only two sets of coefficients {a∞
n } and {b∞

n } need to be determined from the bo-
undary conditions on the lid: for a given N the number of complex unknowns is 2N .

The oscillatory instantaneous streamline patterns in such a container are shown in
figure 3 at four different times over the half period. The fields are shown only to
a depth of three container widths; and only in the range 0 � x < 0.5 since there is
symmetry about the plane x = 0. There is little change in the patterns up to t = T/8
but when t = T/4 one can clearly see that the first primary eddy has shortened
considerably and the streamlines around the primary eddy centres have a more
circular appearance. At t = 3T/8 the patterns look like those at the earlier times but
the direction of the circulation has now reversed. Note that the plate is stationary at
t = T/4 and reverses direction for t > T/4. Thus u(x, 0, t) would have to vanish at
the former time and reverse direction at the latter and this is indeed what happens.
A question of considerable interest, perhaps the most interesting in this investigation,
is: how exactly does the change from (c) to (d) take place? The first primary eddy
cannot simply change direction instantaneously; in fact, some other eddy mechanism
must operate to moderate this drastic change. We will discuss this in greater detail in
§ 3.3.

We can say something definite about the nature of the eddies seen in figure 3 as
| z |→ ∞. In this limit the eddy structure will be dominated by the nature of the
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Figure 3. Oscillatory streamline patterns in an infinitely deep container Re= 0.1.
(a) t = 0, (b) t = T/8, (c) t = T/4, (d) t =3T/8.

eigenvalue with the smallest real part. Looking at table 1 it is clear that the dominant
eigenvalue is λl

1 ≈ 4.2099 − 2.2461i, although the real part of λu
1 is only slightly

larger. Thus for large | z |, ψ is determined by the first terms alone in the series
(18). Since the z-dependence is given by, say, exp (λl

1r + iλl
1i)z, the counter-rotating

eddies will be spaced ∼ π/λl
1i ≈ 1.399 apart while the field will decay by a factor

of exp (−π | λl
1r/λ

l
1i |) ≈ 1/361 going from one eddy centre to the next. It may be

observed that the eddy spacing is already close to the asymptotic value in figure 3.

3.2. The general eddy structure in containers of finite depth

When dealing with cavities of finite depth we have to use the full expansions as given
in (16). Most aspects of the general eddy structure and its dependence on the depth h

can be inferred from the instantaneous streamline patterns seen in figures 4–7. In each
figure the patterns are shown at times spaced T/8 apart. In the shallowest container
of depth h = 0.2, figure 4, the general ciruculation is, as might be expected, clockwise
until t = T/4; however the primary eddy has two secondary eddies inside it, one on
each side of the symmetry plane, connected by a saddle which is not shown. This
secondary structure changes in size over the period as can be seen from the figure.
Figure 4(c) also shows the existence of a corner eddy at the quarter-period which
cannot be seen at the other times. Once again we note that the circulation changes
sign beyond this time, as it must since the plate motion has now changed direction.
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Figure 4. Periodic streamline patterns in a container of depth h = 0.2, Re= 0.1.
(a) t = 0, (b) t = T/8, (c) t = T/4, (d) t = 3T/8.

Note that we do not show any patterns at the half-period since this would be identical
to those at the initial instant but with the circulation reversed.

The situation is somewhat different in a container of unit depth, figure 5. Here the
single primary eddy has no secondary structure; in fact, at each instant shown the flow
field looks qualitatively like the flow field that one would find in steady flow (Shankar
1993). A corner eddy can be seen in each of the frames but its size and orientation
changes with time. At the quarter-period, when the plate is instantaneously at rest,



Oscillatory eddy structure in a container 175

0.5

0

–0.5

0.5

0

–0.5
0 0.5 0 0.5

z

z

(a)                                                               (  b)

(c) (d )

x                                                                x

Figure 5. Periodic streamline patterns in a container of depth h =1.0, Re= 0.1.
(a) t = 0, (b) t = T/8, (c) t = T/4, (d) t =3T/8.

the central streamlines tend to be more circular and overall the pattern looks different
from that seen earlier. An eighth of a period later the direction of the circulation
has reversed, figure 5(d). We will examine this transition more carefully in the next
sub-section.

Examining figure 3 we conclude that when the container depth is around the
asymptotic eddy spacing a second primary eddy should be formed over the cycle.
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Figure 6. Periodic streamline patterns in a container of depth h = 1.5, Re= 0.1.
(a) t = 0, (b) t = T/8, (c) t = T/4, (d) t = 3T/8.

This is seen in figure 6 for a container of depth h = 1.5. In the first two frames we
observe just a single primary eddy and a large corner eddy. But at the quarter-period
the primary eddy is compressed in size with its streamlines more circular. Below it
is a second counter-rotating primary eddy. This eddy contains within it a secondary
structure of two eddies whose centres are connected by a saddle on the symmetry
plane. We are not able to resolve a corner eddy at this instant. At t =3T/8 the
circulation has reversed, the secondary eddy has disappeared and the corner eddy has
reappeared but with its circulation reversed. We will examine the formation of the
second primary eddy in § 3.4.

Finally, as an example of a deep container we consider the case of h =4 in figure 7.
There are generally three primary eddies in this case, as might have been guessed
from the value of approximately 1.4 for the asymptotic spacing of the eddies. We
observe that there are corner eddies at all the times shown. As in § 3.1 the main
change seen is the compression of the first primary eddy and the clear distortion of
the central streamlines to a circular shape at the quarter-period. Once the circulation
reverses, the streamline pattern is much like the earlier pattern.

3.3. The mechanism for the reversal of the general circulation

Perhaps the question of greatest interest in this investigation concerns the nature
of the reversal of the general circulation over each half-cycle of the lid motion. It
is noted in each of figures 4–7 that at t = T/4, when the lid is instantaneously at
rest, the circulation in the first primary eddy is always clockwise. At t = 3T/8 the
circulation is anticlockwise following the lid motion. This change could not have been
instantaneous and we wish here to examine how exactly this change takes place.
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Figure 7. Periodic streamline patterns in a container of depth h =4.0, Re= 0.1.
(a) t = 0, (b) t = T/8, (c) t = T/4, (d) t =3T/8.

Figure 8 presents details of the transition of the flow pattern when the lid reverses
its direction of motion. Before the reversal, the flow pattern is similar to the one in
figure 5(a) and consists of a large primary eddy A and a corner eddy C with a zero
streamline ZS1 dividing the two. Now when the lid starts to move in the opposite
direction, a thin region of fluid near the lid starts to circulate in a sense opposite to
the bulk due to the non-slipping of fluid on the lid (figure 8a). This eddy, B, contains
two centres, one on the left and another on the right of the symmetry plane and the
two centres are connected by a saddle on this plane. This whole structure mediates
between the large primary eddy whose circulation is now in the ‘wrong’ direction and
the lid which is now moving to the left. It is clear that there must be a zero streamline
ZS2 dividing the two circulating regions. With increasing time the substructure in the
new primary eddy B shrinks until the two centres and saddle coalesce to a single centre
on x =0. Within a ten-thousandth of a time-period, regions B and C increase rapidly
in size while region A shrinks (figure 8b). This continues with ZS1 and ZS2 drawing
ever closer to each other (figures 8c, d) till they finally touch, two saddles S1 and S2
appear and a saddle–saddle connection or heteroclinic orbit is formed (figures 8e, f )
(S2 is not seen as only one half of the container is presented throughout). At this
stage, there is a zero streamline ZS3, not shown in figure 8(e), separating region A
(which is by this time the same size as B) and C. Though this is not visible in the
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Figure 8. Details of the transient eddy structure during flow reversal for t > T/4; h = 1.0,
Re= 0.1. (a) t = 0.25001T , (b) t =0.25015T , (c) t = 0.25020T , (d) t = 0.25021T , (e) t = 0.25022T ,
(f ) t =0.25024T , (g) t =0.25028, (h) t =0.25031T .

figure there is also a new corner eddy D with a sense of rotation opposite to C with
another zero streamline ZS4 dividing the two. The two ends of ZS3 meanwhile rapidly
approach each other and touch forming a limacon, the saddles S1 and S2 disappear
together with the heteroclinic orbit and what was once the corner eddy C has now
been engulfed by the new primary eddy B (figure 8g). Meanwhile, region A continues
to shrink and is on the verge of disappearing in the final panel, figure 8(h). The flow
topology subsequent to this time will be similar to that in figure 5(d). The transition
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Figure 9. Details of the transient eddy structure during flow reversal for t > 0.25T ; h = 1.5,
Re= 0.1. (a) t = 0.25001T , (b) t = 0.25030T , (c) t =0.25037T , (d) t = 0.25038T .

time from the initial to the final flow pattern is roughly three ten-thousandths of a
time period.

Figure 9 shows similar details for the case of a deeper container when h = 1.5.

The transition details are similar to h = 1.0 except that the specific flow topologies
that occur in the transition are more complicated due to the presence of three
primary eddies compared to two for h = 1.0 (figure 9). For example, there are four
heteroclinic orbits in figure 9(b) compared to two in figure 8(f ). It is clear from
the transitions shown here that, twice over each cycle as the direction of motion is
reversed, there is a tendency for good mixing to take place. However, since these
changes occur over a small fraction of the period, at least in the cases shown here,
one may wonder whether this contribution to the mixing process can be significant.
We will discuss this matter in greater detail later when some other factors will also be
considered.

The results shown here are all for Re= 0.1. We find very similar qualitative results
for higher Reynolds numbers but as Re increases the time scales, as fractions of the
period, over which the transition takes place continue to increase. In § 3.6 we will
discuss the results obtained for Re =100 where the transition time is a significant
fraction of the period.

3.4. The formation and decay of the second primary eddy, h = 1.5

Another transient phenomenon of interest is the appearance and disappearance of
the second primary eddy seen in figure 6. We see in figure 6(c) a second counter-
rotating primary eddy but only a single primary in the other panels. The details of
the formation of the second primary eddy from merger of the corner eddies can be
seen in figure 10.
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Figure 10. Formation of the transient second primary eddy from the merger of the growing
corner eddies h = 1.5, Re= 0.1. (a) t =0.2492T , (b) t =0.2493T , (c) t = 0.2498T .

In figure 10(a), t = 0.2492T , the corner eddy is much larger than it was at t = 0.125T

(figure 6b). With increasing time the two corner eddies keep growing until at around
t = 0.2493T , figure 10(b), the corner eddies just touch. With further increases of time
the stagnation point on the bottom wall lifts off with a saddle connecting the two
centres which together with their surrounding circulating fluid form part of the second
primary eddy. This whole picture is very reminescent of what happens in a cavity
with a steadily moving lid if the depth is increased (Shankar 1993). Here increasing
time is analogous to increasing depth in the steady case. The disappearance of this
eddy with further increasing time follows a similar course, though in reverse.

3.5. Corner eddies

A matter of theoretical importance is the existence of eddies near sharp corners in
viscous flows. For steady flows, Moffatt (1964) long ago showed that, in general,
there could be an infinite number of counter-rotating eddies, of decreasing size and
strength, near a corner. Moffatt was able to employ a simple similarity analysis of
the biharmonic equation in polar coordinates to reach this important conclusion.
It appears that no such result is currently available for the linearized, unsteady
Navier–Stokes equations (1). In fact, if a Moffatt-type analysis is attempted on (2)
we soon find that because the operator in (2) is not fully homogeneous in r , the
radial coordinate, no simple resolution of the question is possible. In this situation
the evidence available from the flow fields computed here takes on some importance.
We note the primary corner eddies can be seen in all figures 4–7, although they are
absent in some of the panels of figure 4; even in the latter case these eddies could be
so small that we have failed to resolve them. So there is a very strong case for the
existence of primary corner eddies. We then tried to see whether second corner eddies
could be identified. In many of the cases, with N = 300, second corner eddies could
be found but even with 300 eigenfunctions these could not be resolved very well.
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Figure 11. Instantaneous streamlines in a container of depth h = 1.5 at a higher Reynolds
number, Re= 100. (a) t = 0, (b) t = T/8, (c) t = T/4, (d) t = 3T/8.

Often it is easier to resolve the weaker eddies when the primary ones grow in size.
Thus in figure 8(d) we are able to resolve the second counter-rotating corner eddy
fairly well because the primary one has grown large in size. But even in this case we
are not able to obtain streamlines of this eddy closer to the lower wall because of the
errors made in satisfying the no-slip condition. In summary, there is some evidence
presented here for the existence of multiple corner eddies although firm conclusions
cannot be drawn.

3.6. Moderate Reynolds numbers

The oscillatory Reynolds number appears in the analysis here as a parameter that
can take all values in the range 0<Re < ∞. At the low end, the flow is quasi-steady
as the viscous term almost balances the pressure and the fluid responds almost in-
stantaneously to the lid. This is the Stokes regime. At the other end, linearizing the
Navier–Stokes equation by dropping the convective terms needs justification. In flow
situations involving just a translational velocity scale, it would indeed be wrong to
drop these terms at high Re. However, in a situation like the present where two
Reynolds numbers can be defined, the linearization is justified provided Sr � 1. We
can, therefore, consider applying our procedure to flows where the Reynolds number
is moderately large with the clear understanding that Retr is kept sufficiently small.

Figure 11 shows the eddy structure for a moderately large Re = 100 and h = 1.5.

The eddies are flatter near the lid and the eddy centres are located closer to the top
wall for Re= 100 than for Re= 0.1 (figure 6). Consequently the velocity gradients
in the z-direction near the lid are steeper. Thus one already sees the formation of
unsteady boundary layers near the walls. Compared to what is seen in figure 6,
the corner eddies are, prior to flow reversal, much smaller, presumably because of
the larger momentum flux down the wall. However, at t = T/4, when maximum
deceleration occurs, the corner eddy penetrates to a greater extent into the primary
eddy than for the Re =0.1 case (figure 6c). The latter case has reached a quasi-steady
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state by t =3 T/8 (figure 6d), whereas for Re =100, the flow is still in transition with
complicated structures (figure 11d) appearing and disappearing. Similar features and
time scales hold for the container of unit depth. If we recall that transition occurred in
about 0.0003T at Re = 0.1 while now at Re = 100 it occurs in something over 0.125T ,
we may conclude that by increasing the Reynolds number we can significantly increase
the period over which this transition may take place.

We will now assess a number of factors that have arisen here that have implications
for the study of mixing. Following Aref (1986), we will mean by ‘mixing’ the process
of diffusion of substance across intermaterial surfaces, in contrast to stirring which is
a process of stretching of intermaterial area. Of course, stirring contributes to mixing
by increasing the intermaterial surface area. Mixing is often synonymously used for
stirring in the literature (e.g. Ottino 1989) but here we will maintain the distinction.
For two-dimensional incompressible flows, it is well-known that stirring is poor in
steady flows and better when the boundaries operate in a periodic manner (Ottino
1989). This is because the equations of motion of an advected particle in such flows
form a 1-degree-of-freedom Hamiltonian system with the stream function Ψ being
the Hamiltonian. Such systems are integrable if Ψ is independent of time (in which
case the streamlines are the pathlines) and can exhibit chaotic behaviour if Ψ is a
function of time. Chaotic advection is known to cause efficient stirring (Aref 1984). In
dynamical systems theory, one way to study chaos has been to perturb an integrable
system. Hamiltonian systems with homoclinic and heteroclinic loops are known to be
good candidates for generating chaos when perturbed; breaking of these loops is a
well-established mechanism to produce chaos in Hamiltonian systems (e.g. Wiggins
1996). In the present context, the steady Stokes flow provides the unperturbed system
(where the particle motion is integrable) with the perturbation being a modulation
in time of the stream function (usually by varying the boundary conditions). If the
modulation is sufficiently slow, the inertia terms can be dropped (Aref & Balachandar
1986) and Ψ satisfies the biharmonic equation. The time dependence of Ψ enters only
through the boundary conditions and this is enough to produce chaotic advection and
attendant stirring. The cavity mixing experiments presented in Ottino (1989) also fall
in the Stokes regime in: Retr, Reos ≈ O(1) in these experiments. Again, good stirring
is observed.

In the present study, we have explored the implications of retaining only the
unsteady inertia term. As we have shown, this is meaningful if the Strouhal number,
Sr � 1. Even though the velocity field is unsteady and the particle motion probably
chaotic (this would have to be established by standard chaos diagnostics like Poincaré
maps), the stirring will be good only if the oscillatory Reynolds number Re is small;
however the extra mixing due to truly unsteady effects around t = T/4 and t = 3T/4
will be small because the fraction of the period over which it is effective is small. If
we now increase the frequency, thus increasing Re, this fraction increases and so this
tends to promote increased mixing. We conjecture that the local mixing in regions
where the flow is changing rapidly may be good. A case in point is the sweeping up of
fluid in the normally stagnant lower corners into the main body of the fluid, twice over
each cycle. This occurs even for a low Re= 0.1 (figure 8e–g) even though the fraction
of time over which this happens is small. A traditional quasi-steady analysis would
have missed this completely. A blob placed in the corner would have been thought
to remain there; the present analysis shows this is not really true. If the Reynolds
number is moderate, the fraction of the period over which the truly unsteady fields
contribute to the mixing increases considerably. However, since Ω has to be increased
for Re to increase, the stirring will tend to be reduced. This is because the more rapid
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oscillations of the container leave less time for the particles to advect appreciably.
A material line just does not have enough time to be stretched and folded globally
even though the particle motion may be chaotic. It could well be that there is a
range over which both effects could be optimized; this can only be determined by a
detailed analysis of the mixing process. Stirring would improve if we could weaken
the restriction Sr � 1 by increasing the lid translational velocity U ; in practice we
could do this with the clear understanding that the present analysis will only provide
approximate estimates of the actual field in this case (as the nonlinear convective
terms have been ignored). This is not unreasonable since for steady laminar flows
in cavities the Stokes flow approximation provides a good approximation even for
moderate Reynolds numbers; only features such as the lack of fore–aft symmetry are
missed. Thus although only a comprehensive analysis of mixing, taking into account
all major factors, can provide a fully reliable picture the present calculations suggest
that unsteady effects can indeed enhance the local mixing.

The situation is quite different if we wish to investigate viscous effects on wave
motion in a container. Consider small-amplitude wave motion in the container which
now has no lid and where the liquid free surface is at z = 0. If the Reynolds number
is high, to a first approximation the surface-gravity wave natural frequencies can be
computed from an inviscid analysis. The viscous corrections to the frequencies and the
estimation of viscous damping depend on a solution of the linearized Navier–Stokes
equations (1) (Nicolás 2002). Here, the boundary conditions at z = 0 are the interface
kinematic condition and the continuity of the stress rather than the no-slip condition.
In this case the high Reynolds number limit is physically meaningful and is what
is of interest. It was with the wave motion connection in mind that the analysis of
the spectrum in § 2 was carried out over the whole range of Reynolds numbers. We
expect these results to be of value in the viscous analysis of wave motion.

4. Conclusion
We have, in this paper, analysed the periodic motion of a liquid in a rectangular

container, generated by the oscillatory motion of the lid. The eigenfunction expansion
procedure was used. It was shown that two sets of eigenvalues {λu

n, n = 1, 2,. .} and
{λl

n, n =1, 2,. .} exist for the eigenvalue problem (3)–(5). They are functions of Re
and related through (9). In the limit Re → ∞, the λl

n approach the real axis and
are approximately equally spaced whereas the λu

n approach the λi = λr line in the
complex-λ-plane and the distance between them decreases.

As might be expected, at low Reynolds numbers the flow field is quasi-steady and
resembles the flow in a container driven by a steady lid motion of velocity equal
to the instantaneous velocity of the lid. Thus quasi-steady eddy structures A and
B (figure 8) form when the lid is accelerating and decelerating the least. A and B
have the same structure but with a reversed flow direction. The transition time Ttr

for A to change to B increases with increasing Re, from a few ten-thousandths of
a period at Re= 0.1 to almost an eighth of a period at Re =100. The flow process
occurring during the transition time Ttr is truly unsteady and cannot be captured
by the steady Stokes equation. During the transition there are features that could
considerably enhance local mixing of the fluid. Morever, there is a strong tendency for
the fluid in the corner regions to be swept into the main body of fluid. Although only
a detailed analysis of the mixing process can determine the parameter regimes where
these effects will be significant, there is little doubt that a traditional quasi-steady
analysis will underestimate the mixing process.
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Finally it should be pointed out that the present analysis provides a foundation for
the analysis of linearized, viscous wave motion in a rectangular, brimful container. The
eigenvalues and eigenfunctions derived here can be used directly. The main difference
from the analysis of this paper will be that, instead of the no-slip conditions at the
lid, the kinematic and stress conditions will have to be applied at the free surface.
For this application the asymptotic results for high Reynolds number will be useful.

We would like to thank our colleague Ms D. Shobha for help in preparing the
figures.
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